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A view of trade wind shallow cumulus cloud fields
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Hadley Circulation and shallow cumulus clouds
(Figure courtesy of Pier Siebesma, KNMI)
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Trade wind cumulus boundary layer physics
radiation n — subsidence
~2K/day ~0.6 cm/s
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 Conceptual models of shallow cumulus clouds
 Results from Large Eddy Simulation

d UW Shallow Cu scheme (Bretherton et. al 2004)
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Adiabatic/Undilute cloud model

The Paradox

» Cumulus cloud-top is
determined by the
neutral buoyancy level
of nearly undilute sub-
cloud air.

» Cumulus clouds are
highly dilute; the mass
of a cumulus cloud is
composed mostly of
entrained air.

» Cumulus clouds are
highly inhomogeneous,
nearly undilute sub-
cloud air is observed
throughout all levels of
cumulus clouds.
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Entraining plume model
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Episodic mixing and buoyancy-sorting model

(Raymond and Blyth 1986, Emanuel 1991, Zhao and Austin 2003
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» Cumulus clouds are
highly inhomogeneous,
nearly undilute sub-
cloud air is observed
throughout all levels of
cumulus clouds.
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Animation of LES simulated shallow cumulus cloud life cycle
(Zhao and Austin 2005a,b)

Shallow Cu parameterization needs to account for the convective fluxes averaged over
the cumulus ensemble which 1s at any time composed of a spectrum of clouds of
different depths and different stages in their life-cycle.
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Animation of LES simulated shallow cumulus cloud life cycle

(Zhao and Austin 2005a,b)
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University of Washington - Shallow Cu Scheme

(Bretherton et. al 2004)

Cloud model:
Single bulk entrainment-detrainment plume
Buoyancy-sorting determination of entrainment/detrainment rate
Explicit vertical momentum equation
Cumulus cloud-top penetrative mixing

Closure:

Cloud-base mass flux is determined by convective ihibition (CIN)
and boundary layer TKE.
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Bulk entraining-detraining plume model

oWy =M, (1, —)

supported by Siebesma and Cuijpers (1995)
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Lateral mixing, entrainment and detrainment

- Hv,u
T (.0 T=0°C ] L
precipitation e 0
Pc = (qc - qc,cril)’ qc,crit = ch(l - ) ’Tcril < T < OOC ( I 4
crit I
;0 T = T’crit I
entrainment/dilution | I
]

O XO Xr XS 1

: fraction of environment air in mixtures

X X yirtual potential temperature

: maximum fraction of environment
air for mixtures to be entrained

X, : maximum fraction of environment

air for mixtures to be saturated

Xe
£y = COH (fractional lateral mixing rate) € =2¢, f . APDE(dy = €,
Prg ]
2
H :convective depth at previous timestep 0= 2¢, f " (1-)PDF(dyx =¢,(1-x.)
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Plume vertical velocity equation

B: drag due to pressure perturbation and growth of sub-plume turbulence
B: parameterized as linear combination of the first 2 terms (Simpson and Wiggert 1969)
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Cloud-top penetrative mixing
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Closure at cloud-base: Mb ~ exp (-CIN / TKE)
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Flow chart of UW-ShCu Modules

find source air property
Adiabatic cloud:
find LCL of source air LCL, LFC, LNB, CIN, CAPE
= C 1
: BMF closure:
Calcula“‘icm PBL TKE / CIN based
alternative choices
determine CBMF
44 Plume model:
set plume base level cumulus mixing assumptions
¥ cloud microphysics assumptions

vertical velocity
cloud detrainment
cumulus penetrative mixing

calculation plume properties

cloud-top penetrative entrainment

¥
. eo— / Others:
ux o Gﬁt moisture/momentum source air determination

precipitation re-evaporation

tendencies to large-scale variables
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Episodic mixing and buoyancy-sorting model

(Raymond and Blyth 1986, Emanuel 1991, Zhao and Austin 2003)
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Episodic mixing and buoyancy-sorting model

(Raymond and Blyth 1986, Emanuel 1991, Zhao and Austin 2003)
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